Peroxynitrite inactivates tryptophan hydroxylase via sulfhydryl oxidation. Coincident nitration of enzyme tyrosyl residues has minimal impact on catalytic activity.
نویسندگان
چکیده
Tryptophan hydroxylase, the initial and rate-limiting enzyme in serotonin biosynthesis, is inactivated by peroxynitrite in a concentration-dependent manner. This effect is prevented by molecules that react directly with peroxynitrite such as dithiothreitol, cysteine, glutathione, methionine, tryptophan, and uric acid but not by scavengers of superoxide (superoxide dismutase), hydroxyl radical (Me(2)SO, mannitol), and hydrogen peroxide (catalase). Assuming simple competition kinetics between peroxynitrite scavengers and the enzyme, a second-order rate constant of 3.4 x 10(4) M(-1) s(-1) at 25 degrees C and pH 7.4 was estimated. The peroxynitrite-induced loss of enzyme activity was accompanied by a concentration-dependent oxidation of protein sulfhydryl groups. Peroxynitrite-modified tryptophan hydroxylase was resistant to reduction by arsenite, borohydride, and dithiothreitol, suggesting that sulfhydryls were oxidized beyond sulfenic acid. Peroxynitrite also caused the nitration of tyrosyl residues in tryptophan hydroxylase, with a maximal modification of 3.8 tyrosines/monomer. Sodium bicarbonate protected tryptophan hydroxylase from peroxynitrite-induced inactivation and lessened the extent of sulfhydryl oxidation while causing a 2-fold increase in tyrosine nitration. Tetranitromethane, which oxidizes sulfhydryls at pH 6 or 8, but which nitrates tyrosyl residues at pH 8 only, inhibited tryptophan hydroxylase equally at either pH. Acetylation of tyrosyl residues with N-acetylimidazole did not alter tryptophan hydroxylase activity. These data suggest that peroxynitrite inactivates tryptophan hydroxylase via sulfhydryl oxidation. Modification of tyrosyl residues by peroxynitrite plays a relatively minor role in the inhibition of tryptophan hydroxylase catalytic activity.
منابع مشابه
Peroxynitrite inactivation of tyrosine hydroxylase: mediation by sulfhydryl oxidation, not tyrosine nitration.
Tyrosine hydroxylase (TH) is the initial and rate-limiting enzyme in the biosynthesis of dopamine (DA). TH activity is significantly diminished in Parkinson's disease (PD) and by the neurotoxic amphetamines, thereby accentuating the reductions in DA associated with these conditions. Reactive oxygen and nitrogen species have been implicated in the damage to DA neurons seen in PD and in reaction ...
متن کاملActivation of microsomal glutathione s-transferase by peroxynitrite.
Peroxynitrite (ONOO-) toxicity is associated with protein oxidation and/or tyrosine nitration, usually resulting in inhibition of enzyme activity. We examined the effect of ONOO- on the activity of purified rat liver microsomal glutathione S-transferase (GST) and found that the activity of reduced glutathione (GSH)-free enzyme was increased 4- to 5-fold by 2 mM ONOO-; only 15% of this increased...
متن کاملHigh-level expression and deletion mutagenesis of human tryptophan hydroxylase.
Human tryptophan hydroxylase has been expressed as a soluble and active form in Escherichia coli by fusion with an affinity tag, maltose-binding protein. The fusion protein has been purified to near homogeneity by affinity chromatography on crosslinked amylose resin. The purified fusion protein has a specific activity of 86 nmol of 5-hydroxytryptophan per min per mg of fusion protein. A series ...
متن کاملTransmembrane nitration of hydrophobic tyrosyl peptides. Localization, characterization, mechanism of nitration, and biological implications.
We have shown previously that peroxynitrite-induced nitration of a hydrophobic tyrosyl probe is greater than that of tyrosine in the aqueous phase (Zhang, H., Joseph, J., Feix, J., Hogg, N., and Kalyanaraman, B. (2001) Biochemistry 40, 7675-7686). In this study, we have tested the hypothesis that the extent of tyrosine nitration depends on the intramembrane location of tyrosyl probes and on the...
متن کاملTetrahydrobiopterin prevents nitration of tyrosine hydroxylase by peroxynitrite and nitrogen dioxide.
Tyrosine hydroxylase (TH) is the initial and rate-limiting enzyme in the synthesis of the neurotransmitter dopamine. TH is inhibited and nitrated at tyrosine residues in vitro by the reactive nitrogen species peroxynitrite and nitrogen dioxide (NO2) and in vivo by drugs that damage dopamine neurons. Tetrahydrobiopterin, which is the essential cofactor for TH and is concentrated in dopamine neur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 274 42 شماره
صفحات -
تاریخ انتشار 1999